

Nani’s Documentation

Welcome! If you are just getting started, a recommended first read is the
Overview as it shortly covers the why, what, and how‘s of this
library. From there, the Installation then the Tutorial sections
should get you up to speed with the basics required to use it.

Looking how to use a specific function, class, or method? The whole public
interface is described in the API Reference section.

Please report bugs and suggestions on GitHub [https://github.com/christophercrouzet/nani].

User’s Guide

	Overview
	Features

	Usage

	Installation
	Installing pip

	System-Wide Installation

	Virtualenv

	Development Version

	Tutorial
	Flat Array of Integers

	Array of Vector2-like Elements

	Vector2 Array With a Custom View

	Particle Structure

	Atomic Views

	API Reference
	Data Types

	Field Helpers

	Functions

	Output Structure

Developer’s Guide

	Running the Tests
	unittest

	tox

	coverage

Additional Information

	Changelog
	v0.2.0 (2017-01-18)

	v0.1.1 (2016-10-24)

	v0.1.0 (2016-10-24)

	Versioning

	License

	Out There

Overview

Upon getting started with NumPy, the rules to define numpy.dtype [https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html] objects
tend to quickly become confusing. Not only different syntaxes can create a
same data type, but it also seems arbitrary and hence difficult to remember
that sub-array data types can only be defined as tuples while structured data
types exclusively require lists made of field tuples, and so on.

To address this point, Nani takes the stance of offering one—and only one—way
of constructing numpy.dtype objects. Although this syntax makes the code
more verbose, it also makes it easier to read and to reason about.

Nani’s approach allows type introspection which brings additional benefits
in the form of dynamically generated default values and view types.
Default values facilitate the definition of new array elements while view types
are useful to encapsulate interactions with NumPy and to expose a different
public interface to your library users instead of the one provided with
numpy.ndarray.

Features

	explicit syntax for defining numpy.dtype objects.

	generates default values and view types.

	allows for type introspection.

Usage

>>> import numpy
>>> import nani
>>> color_type = nani.Array(
... element_type=nani.Number(type=numpy.uint8, default=255),
... shape=3,
... view=None)
>>> dtype, default, view = nani.resolve(color_type, name='Color')
>>> a = numpy.array([default] * 2, dtype=dtype)
>>> v = view(a)
>>> for color in v:
... print(color)
[255, 255, 255]
[255, 255, 255]

The color_type above defines an array of 3 numpy.uint8 elements having
each a default value of 255. The resulting dtype and default
objects are used to initialize a new NumPy array of 10 color elements, while
the view type is used to wrap that array into a standard collection
interface.

See also

The Tutorial section for more detailed examples and explanations on
how to use Nani.

Installation

Nani is written in the Python language and hence requires a Python interpreter.
Any of the following Python versions is supported: 2.7, 3.3, 3.4, 3.5, and 3.6.
On top of that, Nani also depends on the numpy [http://www.numpy.org] package.

Note

Package dependencies are automatically being taken care off when using
pip.

Installing pip

The recommended [1] approach for installing a Python package such as Nani is
to use pip [https://pip.pypa.io], a package manager for projects written in Python. If pip is
not already installed on your system, you can do so by following these steps:

	Download get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py].

	Run python get-pip.py in a shell.

Note

The installation commands described in this page might require sudo
privileges to run successfully.

System-Wide Installation

Installing globally the most recent version of Nani and its dependencies can be
done with pip:

$ pip install nani

Or using easy_install [https://setuptools.readthedocs.io/en/latest/easy_install.html] (provided with setuptools [https://github.com/pypa/setuptools]):

$ easy_install nani

Virtualenv

If you’d rather make Nani and its dependencies only available for your specific
project, an alternative approach is to use virtualenv [https://virtualenv.pypa.io]. First, make sure that
it is installed:

$ pip install virtualenv

Then, an isolated environment needs to be created for your project before
installing Nani in there:

$ mkdir myproject
$ cd myproject
$ virtualenv env
New python executable in /path/to/myproject/env/bin/python
Installing setuptools, pip, wheel...done.
$ source env/bin/activate
$ pip install nani

At this point, Nani is available for the project myproject as long as the
virtual environment is activated.

To exit the virtual environment, run:

$ deactivate

Note

Instead of having to activate the virtual environment, it is also possible
to directly use the env/bin/python, env/bin/pip, and the other
executables found in the folder env/bin.

Note

For Windows, some code samples might not work out of the box. Mainly,
activating virtualenv is done by running the command
env\Scripts\activate instead.

Development Version

To stay cutting edge with the latest development progresses, it is possible to
directly retrieve the source from the repository with the help of Git [https://git-scm.com]:

$ git clone https://github.com/christophercrouzet/nani.git
$ cd nani
$ pip install --editable .[dev]

Note

The [dev] part installs additional dependencies required to assist
development on Nani.

	[1]	See the Python Packaging User Guide [https://packaging.python.org/current/]

Tutorial

Creating an array in NumPy requires to provide a dtype describing the data
type for each element of the array. With Nani, a more explicit syntax is used
to define the data type, as well as other properties such as the default values
and the view types.

As a result, creating a NumPy array through Nani requires an additional step:

	describe a NumPy array’s dtype with Nani, using the
data types provided, such as Number,
Array, Structure, and so on.

	resolve Nani’s data type into a format compatible with NumPy, using
the function resolve().

	use the resolved properties to create the NumPy array through the usual
numpy‘s API, and to optionally offer an abstraction layer around
it.

Flat Array of Integers

>>> import numpy
>>> import nani
>>> data_type = nani.Number(type=numpy.int32)
>>> dtype, default, view = nani.resolve(data_type)
>>> a = numpy.arange(15, dtype=dtype)
>>> a
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> type(a)
<type 'numpy.ndarray'>
>>> v = view(a)
>>> v
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
>>> type(v)
<class 'nani.ArrayView'>

This example is the simplest usage possible, making it a good start to
understand what’s going on.

Firstly, an integral data type using Number is defined. This is
describing the type of each element of the NumPy array that will be created. By
default, Number has a type value set to numpy.float_,
which needs to be overriden here to describe an integer instead.

Then the resolve() function returns, amongst other properties, a NumPy
dtype which is directly used to initialize the NumPy array.

The view generated by resolve() can be used to wrap the whole NumPy
array. Here it is nothing more than a simple emulation of a Python container
[1]: it has a length, it is iterable, and it can be queried for membership
using the in keyword. Of course, it is possible to provide a different
interface.

Array of Vector2-like Elements

>>> import numpy
>>> import nani
>>> vector2_type = nani.Array(
... element_type=nani.Number(),
... shape=2,
... name='Vector2')
>>> dtype, default, view = nani.resolve(vector2_type, name='Positions')
>>> a = numpy.zeros(3, dtype=dtype)
>>> v = view(a)
>>> for i, position in enumerate(v):
... position[0] = i + 1
... position[1] = i + 2
>>> v
[[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]]
>>> type(v)
<class 'nani.Positions'>
>>> type(v[0])
<class 'nani.Vector2'>

Vector2 structures are best represented in NumPy using a sub-array of size 2.
The same can be expressed in Nani and the view generated will correctly wrap
the whole NumPy array into a container-like class [1], but accessing its
elements will also return yet another object with a similar interface.

Vector2 Array With a Custom View

>>> import math
>>> import numpy
>>> import nani
>>> class Vector2(object):
... __slots__ = ('_data',)
... def __init__(self, data):
... self._data = data
... def __str__(self):
... return "(%s, %s)" % (self.x, self.y)
... @property
... def x(self):
... return self._data[0]
... @x.setter
... def x(self, value):
... self._data[0] = value
... @property
... def y(self):
... return self._data[1]
... @y.setter
... def y(self, value):
... self._data[1] = value
... def length(self):
... return math.sqrt(self.x ** 2 + self.y ** 2)
>>> vector2_type = nani.Array(
... element_type=nani.Number(),
... shape=2,
... view=Vector2)
>>> dtype, default, view = nani.resolve(vector2_type, name='Positions')
>>> a = numpy.array([(1.0, 3.0), (2.0, 4.0)], dtype=dtype)
>>> v = view(a)
>>> for position in v:
... position.x *= 1.5
... position.y *= 2.5
... position.length()
7.64852927039
10.4403065089
>>> a
[[1.5 7.5]
[3. 10.]]
>>> v
[(1.5, 7.5), (3.0, 10.0)]

This time a custom view for the Vector2 elements is provided. As per the
documentation for the Nani data type Array, the view is a class
accepting a single parameter data.

This view defines a custom interface that allows accessing the Vector2 elements
through the x and y properties, as well as retrieving the length of
the vector.

Note

To expose a sequence-like interface, similar to what Nani generates
dynamically, it is necessary to implement it manually.

Particle Structure

>>> import numpy
>>> import nani
>>> class Vector2(object):
... __slots__ = ('_data',)
... def __init__(self, data):
... self._data = data
... def __str__(self):
... return "(%s, %s)" % (self.x, self.y)
... @property
... def x(self):
... return self._data[0]
... @x.setter
... def x(self, value):
... self._data[0] = value
... @property
... def y(self):
... return self._data[1]
... @y.setter
... def y(self, value):
... self._data[1] = value
>>> vector2_type = nani.Array(
... element_type=nani.Number(),
... shape=2,
... view=Vector2)
>>> particle_type = nani.Structure(
... fields=(
... ('position', vector2_type),
... ('velocity', vector2_type),
... ('size', nani.Number(default=1.0)),
...),
... name='Particle')
>>> dtype, default, view = nani.resolve(particle_type, name='Particles')
>>> a = numpy.array([default] * 2, dtype=dtype)
>>> v = view(a)
>>> for i, particle in enumerate(v):
... particle.position.x = (i + 2) * 3
... particle.velocity.y = (i + 2) * 4
... particle.size *= 2
... particle
Particle(position=(6.0, 0.0), velocity=(0.0, 8.0), size=2.0)
Particle(position=(9.0, 0.0), velocity=(0.0, 12.0), size=2.0)
>>> data = nani.get_data(v)
>>> data['position'] += data['velocity']
>>> data
[([6.0, 8.0], [0.0, 8.0], 1.0) ([9.0, 12.0], [0.0, 12.0], 2.0)]

Building upon the previous example, a particle data type is defined in the form
of a NumPy structured array. The Vector2 data type is reused for the
position and velocity fields, with its custom view still giving access
to the x and y properties.

The default values returned by the resolve() function is also used
here to initialize NumPy’s array, ensuring that the size field is set to
1.0 for each particle.

At any time, the NumPy array data can be retrieved from an array view generated
by Nani using the get_data() function, allowing the user to bypass
the interface provided.

Atomic Views

When accessing or setting an atomic element—such as a number—in a NumPy array,
its value is directly returned. The views dynamically generated by Nani follow
this principle by default but also offer the possibility to add an extra layer
between the user and the value. One use case could be to provide a more
user-friendly interface to manipulate bit fields (or flags):

>>> import sys
>>> import numpy
>>> import nani
>>> if sys.version_info[0] == 2:
... def iteritems(d):
... return d.iteritems()
... else:
... def iteritems(d):
... return iter(d.items())
>>> _PLAYER_STATE_ALIVE = 1 << 0
>>> _PLAYER_STATE_MOVING = 1 << 1
>>> _PLAYER_STATE_SHOOTING = 1 << 2
>>> _PLAYER_STATE_LABELS = {
... _PLAYER_STATE_ALIVE: 'alive',
... _PLAYER_STATE_MOVING: 'moving',
... _PLAYER_STATE_SHOOTING: 'shooting'
... }
>>> class PlayerState(object):
... __slots__ = ('_data', '_index')
... def __init__(self, data, index):
... self._data = data
... self._index = index
... def __str__(self):
... value = self._data[self._index]
... return ('(%s)' % (', '.join([
... "'%s'" % (name,)
... for state, name in iteritems(_PLAYER_STATE_LABELS)
... if value & state
...])))
... @property
... def alive(self):
... return self._data[self._index] & _PLAYER_STATE_ALIVE != 0
... @alive.setter
... def alive(self, value):
... self._data[self._index] |= _PLAYER_STATE_ALIVE
... @property
... def moving(self):
... return self._data[self._index] & _PLAYER_STATE_MOVING != 0
... @moving.setter
... def moving(self, value):
... self._data[self._index] |= _PLAYER_STATE_MOVING
... @property
... def shooting(self):
... return self._data[self._index] & _PLAYER_STATE_SHOOTING != 0
... @shooting.setter
... def shooting(self, value):
... self._data[self._index] |= _PLAYER_STATE_SHOOTING
>>> vector2_type = nani.Array(
... element_type=nani.Number(),
... shape=2)
>>> player_type = nani.Structure(
... fields=(
... ('name', nani.String(length=32, default='unnamed')),
... ('position', vector2_type),
... ('state', nani.Number(
... type=numpy.uint8,
... default=_PLAYER_STATE_ALIVE,
... view=PlayerState)),
...),
... name='Player')
>>> dtype, default, view = nani.resolve(player_type, name='Players')
>>> a = numpy.array([default] * 2, dtype=dtype)
>>> v = view(a)
>>> first_player = v[0]
>>> first_player
Player(name=unnamed, position=[0.0, 0.0], state=('alive'))
>>> first_player.state.moving = True
>>> first_player.state
('alive', 'moving')
>>> first_player.state.shooting
False

The NumPy array created here is made of elements each representing a Player
from a game. The view class PlayerState allows to manipulate the state
of the player (alive, moving, shooting) by abstracting the bitwise operations
required to read/set the flags from/to the numpy.uint8 data. As per the
documentation of the data type Number, the view class’ __init__
method is required to accept 2 parameters: data and index.

	[1]	(1, 2) See the Collection item in the table for
Abstract Base Classes for Containers [https://docs.python.org/library/collections.abc.html].

API Reference

The whole public interface of Nani is described here.

All of the library’s content is accessible from within the only module
nani. This includes the types required to define a NumPy dtype, the
field helpers when dealing with structured arrays, the functions, and the final
output structure Nani returned from the main routine resolve().

	Data Types

	Field Helpers

	Functions

	Output Structure

Data Types

These are the data types mimicking the NumPy’s scalar hierarchy of types [https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html] and
allowing to describe NumPy’s dtypes [https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html] in the Nani format.

They can later on be converted into NumPy’s dtypes by calling the
resolve() function.

	Bool
	Type corresponding to numpy.bool_.

	Object
	Type corresponding to numpy.object_.

	Number
	Type corresponding to numpy.number.

	String
	Type corresponding to numpy.string_.

	Unicode
	Type corresponding to numpy.unicode_.

	Array
	Type corresponding to a NumPy (sub)array.

	Structure
	Type corresponding to a NumPy structured array.

	Bytes
	alias of String

	Str
	alias of Unicode

	
class nani.Bool(default=False, view=None)

	Type corresponding to numpy.bool_.

	
default

	bool – Default value.

	
view

	type or None – If None, the owning array returns a direct reference to this
boolean value, otherwise it is expected to be a class object wrapping
it and accepting 2 parameters: data, the NumPy array owning the
boolean value, and index, its position in the array.

	
class nani.Object(default=None, view=None)

	Type corresponding to numpy.object_.

	
default

	object – Default value.

	
view

	type or None – If None, the owning array returns a direct reference to this Python
object, otherwise it is expected to be a class object wrapping it and
accepting 2 parameters: data, the NumPy array owning the Python
object, and index, its position in the array.

	
class nani.Number(type=numpy.float_, default=0, view=None)

	Type corresponding to numpy.number.

	
type

	type – Type of the number. Either one inheriting from numbers.Number or
numpy.number.

	
default

	numbers.Number or numpy.number – Default value.

	
view

	type or None – If None, the owning array returns a direct reference to this
numeric value, otherwise it is expected to be a class object wrapping
it and accepting 2 parameters: data, the NumPy array owning the
numeric value, and index, its position in the array.

	
class nani.String(length, default='', view=None)

	Type corresponding to numpy.string_.

	
length

	int – Number of characters.

	
default

	str on PY2 or bytes on PY3 – Default value.

	
view

	type or None – If None, the owning array returns a direct reference to this string
value, otherwise it is expected to be a class object wrapping it and
accepting 2 parameters: data, the NumPy array owning the string
value, and index, its position in the array.

	
class nani.Unicode(length, default='', view=None)

	Type corresponding to numpy.unicode_.

	
length

	int – Number of characters.

	
default

	unicode on PY2 or str on PY3 – Default value.

	
view

	type or None – If None, the owning array returns a direct reference to this
unicode value, otherwise it is expected to be a class object wrapping
it and accepting 2 parameters: data, the NumPy array owning the
unicode value, and index, its position in the array.

	
class nani.Array(element_type, shape, name=None, view=None)

	Type corresponding to a NumPy (sub)array.

	
element_type

	nani type – Type of each element.

	
shape

	int or tuple of int – Shape of the array. Passing an int defines a 1D array.

	
name

	str or None – Name for the view type if view is None.

	
view

	type or None – If None, a view for this array is dynamically generated by Nani,
otherwise it is expected to be a class object wrapping it and accepting
1 parameter: data, the corresponding NumPy array.

	
class nani.Structure(fields, name=None, view=None)

	Type corresponding to a NumPy structured array.

	
fields

	tuple of nani.Field or compatible tuple – Fields defining the structure.

	
name

	str or None – Name for the view type if view is None.

	
view

	type or None – If None, a view for this structured array is dynamically generated
by Nani, otherwise it is expected to be a class object wrapping it and
accepting 1 parameter: data, the corresponding NumPy structured
array.

	
class nani.Bytes(length, default='', view=None)

	Alias for String.

	
class nani.Str(length, default='', view=None)

	Alias for String on PY2 or Unicode on PY3.

Field Helpers

Structured arrays are described as a sequence of fields. Each field can be
defined as a Field or as a tuple compatible with the Field
structure.

A constant READ_ONLY equivalent to the boolean value True is
provided to make the code more readable when setting the
Field.read_only attribute without explicitely writing the read_only
keyword. Example:

>>> import nani
>>> data_type = nani.Structure(
... fields=(
... ('do_not_touch', nani.Number(), nani.READ_ONLY),
...)
...)

	Field
	Describe a field of a structured array.

	READ_ONLY
	Constant to use for the Field.read_only attribute’s value.

	
class nani.Field(name, type, read_only=False)

	Describe a field of a structured array.

	
name

	str – Name of the field.

	
type

	nani data type – Type of the field.

	
read_only

	bool – True to not define a setter property in the structured array view
if it is set to be dynamically generated by Nani.

	
nani.READ_ONLY = True

	Constant to use for the Field.read_only attribute’s value.
To use for readability reasons when the read_only keyword is not
explicitely written.

Functions

	validate
	Check if a data type is well-formed.

	resolve
	Retrieve the properties for a given data type.

	update
	Update a data type with different values.

	get_data
	Retrieve the NumPy data from an array view generated by Nani.

	get_element_view
	Retrieve the element view from an array view generated by Nani.

	
nani.validate(data_type)

	Check if a data type is well-formed.

	Parameters:	data_type (nani data type) – Data type.

	Returns:	True if the data type is well-formed.

	Return type:	bool

	Raises:	TypeError or ValueError – The data type isn’t well-formed.

	
nani.resolve(data_type, name=None, listify_default=False)

	Retrieve the properties for a given data type.

This is the main routine where most of the work is done. It converts
Nani’s data types into properties that can be used to define a new NumPy
array and to wrap it into a view object.

Use validate() to check if the input data type is well-formed.

	Parameters:	
	data_type (nani data type) – Type of the array elements.

	name (str) – Name for the view to be generated for the array.

	listify_default (bool) – True to output the default values with lists in place of tuples.
This might cause the output to be incompatible with array creation
routines such as numpy.array but it should still work for
element assignment.

	Returns:	The properties to use to initalize a NumPy array around the data type.

	Return type:	nani.Nani

Examples

Create a NumPy array where each element represents a color:

>>> import numpy
>>> import nani
>>> color_type = nani.Array(
... element_type=nani.Number(type=numpy.uint8, default=255),
... shape=3,
... view=None)
>>> dtype, default, view = nani.resolve(color_type, name='Color')
>>> a = numpy.array([default] * element_count, dtype=dtype)
>>> v = view(a)
>>> type(v)
<class 'nani.Color'>
>>> for color in v:
... color
[255, 255, 255]
[255, 255, 255]

	
nani.update(data_type, **kwargs)

	Update a data type with different values.

The operation is not made in place, instead a copy is returned.

	Parameters:	
	data_type (nani data type) – Data type.

	kwargs – Keyword arguments to update.

	Returns:	The updated version of the data type.

	Return type:	nani data type

Examples

Update the shape of an array data type and the default value of its
elements:

>>> import nani
>>> data_type = nani.Array(
... element_type=nani.Number(),
... shape=2)
>>> new_data_type = nani.update(
... data_type,
... element_type=nani.update(data_type.element_type, default=123),
... shape=3)

	
nani.get_data(view)

	Retrieve the NumPy data from an array view generated by Nani.

	Parameters:	view (nani.AtomicArrayView or nani.CompositeArrayView) – Array view.

	Returns:	The NumPy array, None otherwise.

	Return type:	type

Examples

>>> import numpy
>>> import nani
>>> data_type = nani.Number(type=numpy.int32)
>>> dtype, _, view = nani.resolve(data_type)
>>> a = numpy.a_range(10, dtype=dtype)
>>> v = view(a)
>>> nani.get_data(v) is a
True

	
nani.get_element_view(view)

	Retrieve the element view from an array view generated by Nani.

	Parameters:	view (nani.AtomicArrayView or nani.CompositeArrayView) – Array view.

	Returns:	The element view, None otherwise.

	Return type:	type

Examples

>>> import numpy
>>> import nani
>>> vector2_type = nani.Array(
... element_type=nani.Number(),
... shape=2,
... name='Vector2')
>>> dtype, default, view = nani.resolve(vector2_type, name='Positions')
>>> a = numpy.zeros(3, dtype=dtype)
>>> v = view(a)
>>> type(v)
<class 'nani.Positions'>
>>> nani.get_element_view(v)
<class 'nani.Vector2'>

Output Structure

This regroups the output structure from the main routine resolve(). The
Nani object regroups the properties helping to define NumPy’s arrays
and to optionally wrap them into an abstraction layer.

	Nani
	Output structure of the function resolve.

	
class nani.Nani(dtype, default, view)

	Output structure of the function resolve.

	
dtype

	numpy.dtype – NumPy’s dtype, that is the data type of the array elements.

	
default

	object – Default value(s) for a single array element.

	
view

	type – A class to use as a wrapper around the NumPy array.

Running the Tests

After making any code change in Nani, tests need to be evaluated to ensure
that the library still behaves as expected.

Note

Some of the commands below are wrapped into make targets for
convenience, see the file Makefile.

unittest

The tests are written using Python’s built-in unittest [https://docs.python.org/library/unittest.html] module. They are
available in the tests directory and can be fired through the
tests/run.py file:

$ python tests/run.py

It is possible to run specific tests by passing a space-separated list of
partial names to match:

$ python tests/run.py ThisTestClass and_that_function

The unittest‘s command line interface is also supported:

$ python -m unittest discover -s tests -v

Finally, each test file is a standalone and can be directly executed.

tox

Test environments have been set-up with tox [https://tox.readthedocs.io] to allow testing Nani against
each supported version of Python:

$ tox

coverage

The package coverage [https://coverage.readthedocs.io] is used to help localize code snippets that could
benefit from having some more testing:

$ coverage run --source nani -m unittest discover -s tests
$ coverage report
$ coverage html

In no way should coverage be a race to the 100% mark since it is not
always meaningful to cover each single line of code. Furthermore, having some
code fully covered isn’t synonym to having quality tests. This is our
responsability, as developers, to write each test properly regardless of the
coverage status.

Changelog

Version numbers comply with the Sementic Versioning Specification (SemVer) [http://semver.org].

v0.2.0 [https://github.com/christophercrouzet/nani/compare/v0.1.1...v0.2.0] (2017-01-18)

Added

	Add a validate() function to the public interface.

	Add equality operators for the views.

	Add support for coverage and tox.

	Add continuous integration with Travis and coveralls.

	Add a few bling-bling badges to the readme.

	Add a Makefile to regroup common actions for developers.

Changed

	Improve the documentation.

	Improve the unit testing workflow.

	Allow array shapes and structure fields to be defined as lists.

	Improve the error messages.

	Replace __str__() with __repr__() for the views.

	Update some namedtuple typenames.

	Refocus the content of the readme.

	Define the ‘long_description’ and ‘extras_require’ metadata to setuptools’
setup.

	Update the documentation’s Makefile with a simpler template.

	Rework the ‘.gitignore’ files.

	Rename the changelog to ‘CHANGELOG’!

	Make minor tweaks to the code.

Fixed

	Fix the duplicate field finder.

	Fix a call to the wrong ‘contains’ implementation in a view.

v0.1.1 [https://github.com/christophercrouzet/nani/compare/v0.1.0...v0.1.1] (2016-10-24)

Changed

	Remove the module index from the documentation.

Fixed

	Fix Read the Docs not building the documentation.

v0.1.0 (2016-10-24)

	Initial release.

Versioning

Version numbers comply with the Sementic Versioning Specification (SemVer) [http://semver.org].

In summary, version numbers are written in the form MAJOR.MINOR.PATCH
where:

	incompatible API changes increment the MAJOR version.

	functionalities added in a backwards-compatible manner increment the
MINOR version.

	backwards-compatible bug fixes increment the PATCH version.

Major version zero (0.y.z) is considered a special case denoting an initial
development phase. Anything may change at any time without the MAJOR version
being incremented.

License

The MIT License (MIT)

Copyright (c) 2016-2017 Christopher Crouzet

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Out There

Projects using Nani include:

	hienoi [https://github.com/christophercrouzet/hienoi]

Index

 A
 | B
 | D
 | E
 | F
 | G
 | L
 | N
 | O
 | R
 | S
 | T
 | U
 | V

A

 	
 	Array (class in nani)

B

 	
 	Bool (class in nani)

 	
 	Bytes (class in nani)

D

 	
 	default (nani.Bool attribute)

 	(nani.Nani attribute)

 	(nani.Number attribute)

 	(nani.Object attribute)

 	(nani.String attribute)

 	(nani.Unicode attribute)

 	
 	dtype (nani.Nani attribute)

E

 	
 	element_type (nani.Array attribute)

F

 	
 	Field (class in nani)

 	
 	fields (nani.Structure attribute)

G

 	
 	get_data() (in module nani)

 	
 	get_element_view() (in module nani)

L

 	
 	length (nani.String attribute)

 	(nani.Unicode attribute)

N

 	
 	name (nani.Array attribute)

 	(nani.Field attribute)

 	(nani.Structure attribute)

 	
 	Nani (class in nani)

 	Number (class in nani)

O

 	
 	Object (class in nani)

R

 	
 	READ_ONLY (in module nani)

 	
 	read_only (nani.Field attribute)

 	resolve() (in module nani)

S

 	
 	shape (nani.Array attribute)

 	Str (class in nani)

 	
 	String (class in nani)

 	Structure (class in nani)

T

 	
 	type (nani.Field attribute)

 	(nani.Number attribute)

U

 	
 	Unicode (class in nani)

 	
 	update() (in module nani)

V

 	
 	validate() (in module nani)

 	view (nani.Array attribute)

 	(nani.Bool attribute)

 	(nani.Nani attribute)

 	(nani.Number attribute)

 	(nani.Object attribute)

 	(nani.String attribute)

 	(nani.Structure attribute)

 	(nani.Unicode attribute)

 _static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Nani's Documentation

 		Overview

 		Features

 		Usage

 		Installation

 		Installing pip

 		System-Wide Installation

 		Virtualenv

 		Development Version

 		Tutorial

 		Flat Array of Integers

 		Array of Vector2-like Elements

 		Vector2 Array With a Custom View

 		Particle Structure

 		Atomic Views

 		API Reference

 		Data Types

 		Field Helpers

 		Functions

 		Output Structure

 		Running the Tests

 		unittest

 		tox

 		coverage

 		Changelog

 		v0.2.0 (2017-01-18)

 		Added

 		Changed

 		Fixed

 		v0.1.1 (2016-10-24)

 		Changed

 		Fixed

 		v0.1.0 (2016-10-24)

 		Versioning

 		License

 		Out There

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down.png

_static/up.png

_static/down-pressed.png

_static/up-pressed.png

